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TABLE XIV. Same as caption for Table XIII except copper is replaced by gold. 

6 (deg) 

30 
60 
90 

120 
150 

da/dtins 

7.493 X104 

5.351 X103 

1.148X103 

3.961 X102 

1.953X102 

r = 200keV 
da/d&a 

6.236X104 

6.653X103 

1.965X103 

8.504X102 

4.886X102 

Z = 79 

da/dQc 

6.996X104 

6.738X103 

1.940X103 

8.241 X102 

4.653 X102 

da/dUns 

2.611XW 
1,910X10* 
4.339X103 

1.649X103 

9.144X102 

r=100keV 
d<r/dQs 

1.787XW 
1.970X104 

6.381 X103 

3.236X193 

2.227X103 

da/dfto 

2.250X105 
2.059X104 

6.267 X103 

3.032 X103 

2.016X103 

S would not change more than 10% even if we changed 
the potential from the one-term exponential to the 
three-term exponential potential or to the Hartree 
potential. 
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A numerical calculation has been carried out to evaluate the 3X3 cross-section matrix involved in the 
electron impact excitation of the ground state of H atom to the 2s and 2p levels. The method of solution 
is that of atomic eigenstates expansion. In this paper, instead of the iterative technique used by other 
authors, the definite integral terms in the coupled radial differential equations are eliminated through some 
linear transformation of the radial functions, thus avoiding iteration of these equations. The accuracy of 
the numerical integration is tested by satisfying the equation of reciprocity and the equation of continuity 
of currents with an error-to-value ratio less than 1 per 1000 on the average; and the maximum of this ratio, 
except for a few cases, has been kept below 5%. The results are in agreement with the results of an iterative 
technique. To evaluate the effect of the long range and the centrifugal potential, a simple perturbation 
theory is developed. The six cross sections Is —> 2s, Is —> 2p, Is —> Is, 2s -» 2s, 2s —> 2p, and 2p —» 2p are 
tabulated elsewhere, only the 2s —»2p and the 2p —> 2p cross sections are reported here. The 2p —> 2p cross 
section requires the solution of the sets of differential equations with different parities. Assuming the validity 
of the eigenstates expansion, it is found by comparison with the eigenstates expansion calculation that the 
Born approximation, despite its simplicity, gives meaningful results for low and close-to-the-threshold 
energies of the bombarding electrons. The effect of the exchange potentials on the cross sections is also 
investigated. Finally, an interesting structure of the Is —> 2s excitation cross section above threshold is found. 

I. INTRODUCTION 

CALCULATION of the excitation cross sections in 
atomic hydrogen by electron impact corresponds 

to the solution of the problem of three interacting 
bodies: one proton and two electrons. By taking the 
position of the proton as the center of mass, the problem 
will reduce to the task of finding the nonseparable wave 
function of the system of the two electrons with an 
attractive center of force. Such solution has not been 
found. However, if this wave function is expanded in 
terms of the eigenstates of the hydrogen atom, the 

coefficients of the expansion, which are functions of the 
position vector of the free electron, can be found through 
numerical integration. When an infinite number of terms 
are included in the expansion, the solution to the prob­
lem is exact. Furthermore, the expansion has the 
advantage that the asymptotic form of its coefficients 
are automatically the asymptotic form of the free-elec­
tron wave function scattered from different atomic 
states, which are simply related to the excitation cross 
sections. 

In this paper atomic states Is, 2s, 2p are included in 
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the expansion and, by antisymmetrizing the two elec­
tron wave functions according to the exclusion principle, 
some contribution from the continuum in the expansion 
is also taken into account. The first calculation of this 
type was performed by Marriot,1 whose expansion con­
sisted of the Is and the 2s states in order to calculate 
the Is —•» 2s transition cross section. This calculation 
was extended by Smith2 to higher total orbital angular 
momenta of the system. Percival and Seaton3 have 
formulated the eigenstate expansion technique in 
general, and have tabulated the coefficients of the 
integrodifferential equations for s, p, and d atomic 
electrons. Burke, Smith, and Schey,4 using the equations 
of Percival and Seaton for the three states Is, 2s, 2p, 
have integrated the resulting integrodifferential equa­
tions. In this paper we solve the same differential 
equations by a linear transformation of the differential 
equations in order to avoid the need for iteration of 
these equations.5 

The numerical integrations were carried out for all 
partial waves, while in higher partial waves the Born 
approximation were used. The transition between the 
eigenstates expansion calculation and the Born approxi­
mation takes place when the results of the two calcula­
tions agree closely. 

II. FORMULATION 

A. Derivation of the Differential Equations 

Since spin-orbit interaction of the electrons are 
neglected, the total orbital angular momentum L and 
the total spin angular momentum S are separately 
conserved. We can then divide the interactions into 
antiparallel spin states, where 5=0, and parallel spin 
states, where 5 = 1 . In this way we deal with spatial 
wave functions of the electrons only, and for brevity 
we call the orbital angular momentum the angular 
momentum. 

Neglecting the motion of the proton and taking its 
position as the origin of the coordinate system, the 
Schrodinger equation for the system can be written 

[F -E>( r 1 , r 2 ) = 0, (2.1) 

where ri and r2 are the position vectors of the bound 
and the free electrons and, in atomic units, 

1 1 1 
H-E= - i V x 2 - ^ 2 + E, (2.2) 

XR. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958). 
2 K. Smith, Phys. Rev. 120, 845 (1960). 
3 1 . C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc. 

53, 654 (1957). 
4 (a) P. G. Burke and K. Smith, Rev. Mod. Phys. 34,458 (1962). 

(b) P. G. Burke, H. M. Schey, and K. Smith, Phys. Rev. 129,1258 
(1963). 

6 Similar calculation has been carried out by R. Damburg and 
R. Peterkop, Proc. Phys. Soc. (London) 80, 563 and 1073 (1962). 
Here the Z —0, 1 cases have been solved by noniterative, and all 
other cases by iterative, methods. 

where E is the total energy of the system and n2 is the 
distance between the two electrons. We expand the total 
wave function ^(ri,r2) in terms of the eigenfunctions of 
the total angular momentum L, 

^(ri,r2)= E ^ ( r ! , r 2 ) . (2.3) 
L=0" 

Since these eigenfunctions are orthogonal, substitution 
of Eq. (2.3) in Eq. (2.1) gives 

[ # - £ ] M n , r 2 ) = 0. (2.4) 

The explicit form of ^z,(ri,r2) is given by 

nihfa vnimz 

Xn-lu(knih,r2)Yhm(®2), (2.5) 

¥>(»i/iwi,ri) = rr1P(^1/i,ri)FZimi(12i). (2.6) 

Here <p(nihmiri) is the hydrogen atom wave function 
with radial part r^P(nJi/i) and angular part Yhmi(tti) 
and quantum numbers nltmi; r2~

lu{knil2,r2) is the radial 
part, and Fj2m2(S22) is the angular part of the free-
electron wave function with quantum numbers knil2m2. 
The relation between the wave number kni and ni is 
given by 

£W1
2=2(W V (2.7) 

\ 2mV 
Finally the constants Cmim2M

llhL= (hhmim2\LM), with 
M representing the total magnetic quantum number, 
are vector coupling coefficients which make the linear 
combination of the products of the one-electron wave 
functions in Eq. (2.5) the eigenfunction of the total 
angular momentum L. In the problem under considera­
tion W l =l , 2; h=0, 1; h=\L-h\, •••, \L+h\ ; 
mi=—h, •••, h and m2=—l2, •••, /2. To make the 
total wave function symmetric for antiparallel spins or 
antisymmetric for parallel spins, the operator P i 2 inter­
changes ri and r2 while /? is + 1 for the first case and is 
— 1 for the second. 

By taking L perpendicular to the % axis M =0 and 
w2= — mh Eq. (2.5) can then be written 

*L(ri,r2)=(l+j8P«) L E C „ 0 W 2 ^ ( ^ r i ) 
mhh w>\ 

Xr2-lu(knih}r2)Yhm(Q2). (2.8) 

In order that \f/L (ri,r2) closely approximates the exact 
wave function, we minimize the expectation value of the 
energy operator with respect to the radial parts of the 
free-electron wave functions 

8 f^*(ri,r,)[ff--£>L(r1,ra)rf>rid lr2=0. (2.9) 

Percival and Seaton3 have evaluated Eq. (2.9) and 
have derived the differential equations for the scattering 
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of free electrons by atomic s, p, and d electrons in 
hydrogen atom, using the theory of the irreducible 
tensor operators in order to evaluate the interaction 
terms between the two electrons. The result is a set of 
coupled second-order differential equations which are 
functions of the radial coordinate of the free electron. 
We have evaluated Eq. (2.9) independently using 
ordinary methods, and have verified the results of 
Percival and Seaton.6 

When the integrals representing the direct potentials 
in the coupled set of differential equations are evaluated 
and some change is made in the limits of the exchange 
potential integrals, these equations can be written in the 
following matrix form: 

rd2 ln(ln+l)l 
—+W u(W»,r) = 2Vn(Wn,r). (2.10) 

ldr2 r2 J 
The components of u are the radial functions of the free 
electron, and V is the potential matrix, u has four 
components when L—1\—1% is even and one component 
when this is odd. Similarly V is a 4X4 matrix when 
L—h—h is even and it has one component when this 
quantity is odd. The case L—0 is an exception. Here 
when L—h—h is even u has three components and V is 
a 3X3 matrix, and the case L—h—h odd does not occur. 
V can be written as the sum of three matrices, 

Vij—Dij+Eij, 

Eij^Fij+Zgif hifdr, 
*=i Jo 

where Ay is the direct potential and E# is the exchange 
potential and both are functions of r. The matrix JS# 
contains in addition integrals with respect to r, and for 
the purpose of numerical integration it can be written 
as the sum of two matrices. The explicit forms of D#, 
Fih gif, and hi/ are given in Appendix I. The value of 
a is 2 for i=j=3 and i—j=4:, and is 1 for all other 
values of i and j . It is understood that for the exchange 
terms the components of u on the right-hand side of 
Eq. (2.10) are inside the integrals of the exchange terms. 

Below we discuss the general solution of Eq. (2.10) 
when it has four components. 

B. Decomposition of the Differential Equations 

If it were not for the definite integrals appearing in 
the potential matrix V, the set of the four coupled 
differential equations (2.10) could be integrated by any 
standard technique. The presence of these unknown 
constants whose integrand involve the unknown func­
tions makes it necessary to solve these equations by 
iteration or by transformation of u into other vectors, 
whose differential equations do not contain definite 

6 K. Omidvar, Technical Note G-419, Goddard Space Flight 
Center, National Aeronautics and Space Administration, 1963 
(unpublished). 

integrals. Since the terms containing definite integrals 
are small as compared with the direct potentials, the 
iteration method can be used by assuming that the 
values of these integrals are zero. The differential equa­
tions are then integrated, the values of the definite 
integrals that are subsequently obtained are substituted 
in the differential equations, and the integration is 
repeated. The process is repeated until sufficiently con­
sistent values of these integrals are obtained. This 
method is useful if the convergences of the constants 
are fast enough and the cross section is not very sensitive 
to the values of these constants. 

In the second method, the transformation of u fixes 
the values of the constants and thus avoids iteration, 
whereby the computation is reduced considerably. We 
have used the second method and the description of the 
method will be given here.7,8 

By making use of Eq. (2.11), Eq. (2.10) can be 
written 

Ldr2 r* J 

- 2 £ [ ( A / + F , / ) ^ + £ gifCif], (2.12) 
, - 1 n*=,i 

where 

Cif=t hif(r)uj(r)dr. (2.13) 
Jo 

We introduce the functions Vi and#*w that are solutions 
of the following differential equations: 

fd2 k(h+l)l .4 
_ + W L = 2 E [AH-Ftflfc, (2.14) 

Ldr2 r2 J y-i 

_ + £ . 2 L . ^ 2 £ [Pn+FM* 
Ldr2 r2 J y-i 

+2B(i,k)grf. (2.15) 

Then Ui is given by the following expression: 

w p ^ + E E f c ^ . (2.16) 
fc=l J=»l v=*\ 

Equation (2.16) can be verified by multiplying Eq. 
(2.15) by Ckf, summing over k, I and v, and adding to 
Eq. (2.14), whereupon Eq. (2.12) results. Substitution 

7 K. Omidvar, Research Report No. Cx-37, p. 22, Inst. Math. 
Sci, New York University, 1959 (unpublished). 

8 See Ref. 1. This description differs from the description of Ref. 
7 and the present paper. In Ref. 1, Vi in Eq. (2.16) is set to zero; 
this makes Bif—0. Eq. (2.17) then reduces to a set of homoge­
neous equations whose determinant must be zero. Since the ampli­
tude of any of the 4 components of u can be left arbitrary, one 
of the Cuf is set to 1 and the rest of the constants are found 
subsequently. 
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of Eq. (2.16) in Eq. (2.13) gives 

L E E WfaW-A^ytur-Bif, 
fc«l z«i wi 

M = l , 2 for i = y=3 and * = i = 4 ; (2.17) 

JU=1 otherwise, 

where 4̂ </*' and £*/ are denned by 

Aifkl= \ hifufldr, 

Bif= / hifVjdr. 
Jo 

The numerical integration is carried out by integrat­
ing Eqs. (2.14) and (2.15) by any standard method, 
calculating A{f

hl and J V by Eqs. (2.18) and, finally, 
solving the system of 18 algebraic equations given by 
Eqs. (2.17) to find ( V . With the known values of 
these constants the integration of Eqs. (2.12) is 
straightforward. 

The determinant of Eqs. (2.17) becomes singular for 
Z=0 and 1. To remove the singularity, some of the 
Ckiv are chosen arbitrarily, and the rest of the Ckf are 
found in terms of the chosen ones (cf. Appendix II). 

III. NUMERICAL INTEGRATION 

A. Solution at the Origin 

Equation (2.10) or its equivalent, Eqs. (2.14) and 
(2.15), constitute a set of four coupled, second order, 
differential equations. Three components of u can be 
eliminated from these equations, resulting in an 8th 
order differential equation for the remaining component. 
Therefore there are eight sets of solutions to Eq. (2.10). 
However, only half of these solutions are regular at the 
origin. Each of the four regular solutions corresponds to 
a definite vector u. The four vectors can properly be 
represented by a 4X4 matrix uih i, j= 1, 2, 3, 4, where i 
corresponds to a particular component and j corre­
sponds to a particular solution of u. In order that the 
four solutions of u be independent of each other, we 
must have 

E C ^ O , *=1 ,2 ,3 ,4 , (3.1) 

where Cj are some constants. A necessary condition for 
this to be satisfied is that the determinant of Eq. (3.1) 
be nonzero, 

Kll*0. (3.2) 

It is not difficult to see that this also is a sufficient condi­
tion. At the origin the solution uy can be expressed as 

power series in r, 

Ui^t<^vr8i+% (3.3) 

where #*/ are the coefficients of the expansion and Si are 
given integers for each component of u and are fixed by 
the behavior of Eq. (2.10) at the origin. Equation (3.2) 
is satisfied near the origin if 

IMMO. (3.4) 
By choosing suitable values of 0#°, subject to the re­
striction (3.4), four independent solutions are obtained. 

B. Solution at Larger r 

With the solution found at the origin, the solution of 
Eq. (2.10) or its equivalent, Eqs. (2.14) and (2.15), can 
be extended from origin through numerical integration 
to any desired value of r. In order to obtain the asymp­
totic amplitudes and the phase shifts, the presence of the 
centrifugal and the long-range potentials, which fall off 
as r~2, make it necessary to extend the solution to 
infinity. This is undesirable because of the time con­
sumption on the computer, and the accumulated errors 
due to the long-range integration. Seaton9 has solved 
the problem of r~2 long-range potentials occuring in the 
off-diagonal elements of the potential matrix V by 
diagonalizing the asymptotic form of the differential 
equations (2.10) and the corresponding S matrix. By an 
inverse transformation the elements of the original S 
matrix are found. Burke, Schey, and Smith have used a 
different method.10 

Instead, we develop here a perturbation theory which 
is based on the method described by Mott and Massey.11 

The error in the resulting solution is inversely propor­
tional to the square of the distance from the origin. 

Equation (2.10) for large distances of r can be written 

| — +£n2]u(£ Jn,r) = 2\Ju(kJn,r), (3.5) 
Ldr2 J 

where U is the sum of the centrifugal potential matrix 
and the asymptotic form of the V matrix. The elements 
of U are given in Appendix III. A component of Eq. 
(3.5) is of the following form: 

[—+*']«« = ««, , x 
ldr2 J (3.6) 

g(r)<£k2u(r), g(r)-*0 as r—»<*>. 

The perturbation theory is applied between some large 
distance R and infinity. Let u vanish at R; then we have 

9 M. J. Seaton, Proc. Phys. Soc. (London) 77, 174 (1961). 
10 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962); 

see also Ref. 4(a). 
11N. F. Mott and H. S. W. Massey, The Theory of Atomic 

Collisions (Oxford Press, Oxford, England, 1949), 2nd ed.? 
Chap. II. 
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the following boundary condition: Eq. (3.14) gives 

dj r1 

Adi = — 5Z — / cos (kiY—kiRi) Ui3 sin (k3r— kjRj)dr, 

by y(r), at infinity we must have (3.17) 

u(R) = 0. (3.7) n, rRi 

If we represent the homogeneous solution of Eq. (3.6) 

y(r) = a sin(kr-kR) , *?» = £ / sin(k{r-kA)Uij sm(kjr—kjRj)dr. 
(3.8) i OikiJ 

V)—\~T ) \ V), ^a, a n ( j ^ c a n easjjy j3e calculated by substituting the 
where a is the amplitude of u(r) if g(r) were identically v a l u e s o f ua f r o m Appendix III, integrating the result-
zero and Aa and y are generated by g(r). Since g(r) is i n£ m t e g r a l s by parts and retaining the leading terms. 
small we can write ^he asymptotic amplitudes and phase shifts are 

„ = y ( l + f ) , (3.9) given by 

where f is a small function. Substitution of Eq. (3.9) in ^ ( ° ° ) = Oi(Ri)+Aoi, 
Eq. (3.6) gives ^ *<(«>) = « t.(JR<)+„+[Z-«(f,3)+*(f,4)>/2, 

^ v ^/ ^ ' ^3'10) where ^ ^ and 8i^ are the a m P l i t u d e s and total 

phase shifts calculated at Ri by the machine, and where 
where, upon double integration, we obtain 5( ,̂3) and 5(i,4) are the 5 functions. 

rrdr rr 

f = / — / g(r')ydr'. (3.11) C. Derivation of the Cross Section 
J R y2 J R 

When contribution of the long-range potentials to 
The constants of integrations are fixed by the condition the amplitudes and the phase shifts are added to these 
(3.7) and the fact that uf{R) = yf(R). values calculated by the numerical integration, we find 

We now integrate Eq. (3.11) by parts, the asymptotic form of uih 

T U g{r)ydY\j " l j / g(r)ydrj ~l' (3*12) f^(r)~a*sb(ft<r-— +«<,Y (3.19) 

When the integration with respect to y is carried out, The elements of the scattering matrix Smn are related to 
and the result is substituted in Eq. (3.9), we obtain aij and by through linear relations.12 The cross section 

[
I ~r -i for the m—*n transition is then given by12 

H— / g(r) cos(kr— kR)dr\ w(2L+l) 
kjR J Qmn = |T w n | 2 , (3.20) 

+cos(kr-kR)^--J^g(r)sm(kr-kR)drj. (3.13) Tmn=8mn-Smnj (3.21) 

Comparison of the second of Eqs. (3.8) and Eq. (3.13) ^ J - i s the:wavenun*erinthe*?**channeled 
, fi_ f /i is the angular momentum quantum number of the shows that 

1 r00 

Aa=- I g(r) cos(kr—kR)dr, 
k J R 

atom in the initial state m. 

D. A Useful Relation 
(3.14) 

A relation based on the symmetry of the interaction 
/ „/f\ sin(kr—kR)dr potentials, which serves as a test on the accuracy of the 

ak J R ' solutions, can be derived. The Ith. and the Mh solutions 
of the ith component of u by Eq. (2.10) are given by 

equations (3.5) are given by \ ^ ^ ^ ^ X ^ ^ y 

e*M = 2Y.U«U4. (3A5) Ldr2 r2 J / 
(3.22) 

To first order this can be written by — - - { -k i 2 —1~~ - \uik=J^ VijUjk. 
d* (J.i+1H 

—fki*—l t——- k»-jb=2j 
-dr2 r2 J J gi(r) = 2 £ ajUij sin(kjr—kjRj), (3.16) 

i' 

where Rj is where Uj has become zero for the last time 
with positive slope. Substitution of this equation in 12 See Ref. 6, Sec. IIB. See also Refs. 4. 

Multiplying the first by Uik and the second by Uu, 
subtracting the two expressions, and summing over i 



2s A N D 2p E L E C T R O N I M P A C T E X C I T A T I O N I N A T O M I C H A975 

gives 

r d2 d2 -i 
53 Uik—Uii—un—Uik ^ Z ) *̂/Ew**wi*""~w*iwi*G# (3.23) 
* L dr2 dr2 J i,/ 

Since F#=F#, the interchange of the summation 
indices changes the sign on the right-hand side of the 
equation, the right-hand side must therefore be zero. 
By integrating the left-hand side from zero to infinity, 
we obtain 

r°°r d2 d2 -| 
TJT / Uik—Uii—un—Uik \dr=0. (3.24) 
i Jo L dr2 dr2 J 

By integrating the above equation by parts and apply­
ing Eq. (3.19), we obtain 

4 

Z) ^idikdu sin(8ik— 8u) = 0, 
i=1 (3.25) 

*, Z=l, 2, 3, 4, JM/. 

Although the terms containing the exchange potentials 
do not cancel out on the right-hand side of Eq. (3.23), 
the cancellation does take place after the integration 
is carried out in Eq. (3.24). 

E. Details of the Numerical Integration 

Milne's13 method with variable mesh size and 
Simpson's14 rule were used for the integration of the 
differential equations and evaluations of the integrals, 
respectively. As the solution advances from the origin, 
the differential equations become less sensitive to the 
size of the increment, and the error of integration falls 
below certain small number e. At each value of r the 
value of the function is found, first with the given value 
of the increment, and second with the value of the 
increment divided in half. The error of integration is 
defined as the difference between these two solutions. 
When the error becomes small, the increment is doubled 
until a maximum value is reached. At some distance Ri 
all the exchange potentials and, similarly, all the direct 
potentials except those representing optically allowed 
transitions and the 2p —> 2p elastic scattering potential 
become vanishingly small (see Appendix III). At this 
distance the set of the differential equations is replaced 
by the simpler set containing only these potentials. The 
integration is continued until some distance i?2, where 
the first-order solution of the rest of the range of inte­
gration is obtained by the method developed in Sec. 
IIIB. No attempt was made to solve any set of linear 
equations or any matrix equations, as these equations 
are solvable by the computer in their original form. 

The values of the constants of the numerical integra­
tion are given below; hi and hf are the initial and the 

13 W. E. Milne, Numerical Calculus (Princeton University 
Press, Princeton, New Jersey, 1949), Sec. 40. 

14SeeRef. 13, Sec. 33. 

final increment of integration. In some exceptional cases, 
different values were used. 

k=ixio-v 
A/=0.05, 

€=1X10-4 , 
J?i=30, 
R2=200. 

All quantities are in units of Bohr radius except e, which 
is dimensionless. 

IV. RESULTS AND DISCUSSION 

The four differential equations listed in Appendix I 
were integrated numerically by the methods described 
in Sec. III. By choosing different values for the deter­
minant (3.4) different sets of independent solutions can 
be generated. The cross sections reported in this paper 
have been obtained by averaging the cross sections 
obtained from two independent sets of solutions. To test 
the accuracy of the numerical integration we define the 
three quantities Dmn, Dmn

r and Dm" given by 

4 

J-/mn= | 2-i ™i&imQ'in Sin^Otw uin) \/ 

4 

2~* KiG'imQ'in | Sin {vim Oin) j , 

m, n=l, 2, 3, 4, m^nf (4.1) 

Dmn'= • , w , » = l , 2 ,3,4, m^n, (4.2) 

Dm"=\j:\smn\'-i\/i:\smn\'+i, 
n—l n—1 

m= 1,2,3,4. (4.3) 

Based on Eqs. (3.25), the symmetry, and the unitary 
property of the S matrix, in an exact solution of the four 
differential equations the right-hand side of these 
equations would vanish; they can therefore be used to 
test the accuracy of the numerical integration. As an 
illustration the numerical values of Dmn, Dmn, and Dm

ff 

for the case of Is—2s—2|> coupling, £= + 1, k%= 2.0, and 
L=3 are given below: 

Z>u= 1.4X10-*, Z>13=2.6X10-4, -£>i4= 1.3X10-*, 
P23=5.1X10-4, D24=2.2X10~3, Z>34=1.8X10~3, 
ZV=7.6X10-4 , Z^S. IXIO™ 3 , Z>U'=5.6X10~3, 
IV=5.4X10~3 , A4

/=5.7X10~3, ZV=1.3X10-3 , 
Dl"=l.SXUF*, ZV'=7.6X10-5, 
£>/':= 2.5X10-V ZV'=4.4X10-6. 

To compare the results of the numerical integration 
by noniterative method as we have carried out here 
with those of iterative method of Refs. 2 and 4 we have 
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TABLE I. Comparison of the iterative and the noniterative re­
sults for the singlet, L = 0 , 1; &i=0.9, 1.0, Is —* 25 excitation cross 
section. I and I I refer to interative and noniterative methods, 
respectively. Dmax is the maximum of the error to value ratios in 
the reciprocity relationships. 

kt 

A. Is—2s coupling 
ZWx (percent) 

I* II I I I 

0.90 
1.00 
0.90 
1.00 

0.90 
1.00 
0.90 
1.00 

0 
0 
1 
1 

0 
0 
1 
1 

a See Ref. 2. 
b See Refs. 4(a), 4(b). 

0.0384 0.0375 
0.0714 0.0725 
0.008 0.0017 
0.051 0.0583 

B. U-2s-
Ql8-*2t 

I b I I 
0.0529 0.523 
0.0766 0.0768 
0.0045 0.0048 
0.0145 0.0147 

7.1 
unknown 

386 
55 

0.72 
0.53 
0.91 
0.75 

-2p coupling 
Dmax (percent) 

I I I 
0.40 
0.12 
2.3 
0.33 

0.40 
0.60 

10 
1.3 

provided Table I.15 The Is —> 2s excitation cross section 
is given by the two methods. Methods I and II refer 
to the iterative and noniterative methods, respectively, 
and Dmax is the maximum of the error to value ratios in 
the reciprocity relations (4.2). In the Is—2s eigenstates 
coupling approximation the noniterative method is far 
more accurate than the iterative method, and as is seen 
the cross sections by the two methods differ from each 
other sometimes in their first significant figure. In the 
Is—2s—2p eigenstates coupling approximation, on the 
other hand, the results by the iterative method seems 
to be somewhat more accurate. The reason is contri-

0.7 

0.6 

g°0.5 

z 
o 

a 0 - 4 
Ul 
to 

§0 .3 
o 

0.2 

O.I 

-

-

-

! 1 

\ ls-2s-2p 
\ ^ - — ' E X . NEGL. 

[ff\\ ls-2$~2p 

[/BORN / ^ ^ ^ ^ 

/ / \ L E X R (Lichten a Schultz) 

/^EXP. (Stebbings Et Al.) 
1 1 1 1 ! 1 1 ! 1 

0 5 10 15 20 25 30 35 40 45 50 55 
ELECTRON ENERGY (eV) 

FIG. 1. Is —» 2s total excitation cross section. 15—25 refers to 
15—25 eigenstates coupling approximation. ls—2s—2p has similar 
meaning. EX. NEGL. refers to exchange neglected case. BORN is 
the Born approximation. EXP. refers to experiment. 

161 am indebted to Dr. K. Smith for sending me some of the 
data in this table. 

buted to the effect of the r-2 long-range potential which 
appear in the differential equations when in the eigen­
states coupling approximation the 2p state is included. 
Two different methods are used in Refs. 4 and the 
present paper to estimate the effect of this potential for 
large distances, and it may be that in Refs. 4 this effect 
is better accounted for. Nevertheless the cross sections 
are the same in th§ir first three decimal places. 

In Fig. 1 we present the theoretical and the experi­
mental estimate of the Is —> 2s excitation cross section. 
The calculated curves are Born, Is—2s coupling, 
Is—2s— 2p coupling exchange neglected, and Is—2s—2p 
coupling exchange included, approximation. The first 
three of these curves are the same as Refs. 4(a) and 
4(b). The experimental curves are those of Lichten and 
Schultz,16 and Stebbings, Fite, and Hummer.17 The 
various calculated results agrees better with the results 
of Lichten and Schultz. However, recent calculations of 
Taylor and Burke18 have shown that, in an eigenstates 
expansion calculation where Is, 2s, 2p, 3s, and 3p are 
included, the cross section at the peak of the Is—2s—2p 
curve is reduced by 30%. This suggests that, within 
eigenstates expansion approximation, more states 
should be included to insure that the convergence has 
been achieved; and the discrepancy between the two 
experimental results is still an unresolved problem. As 
another theoretical approach to the problem, H. L. Kyle 
and A. Temkin19 have extended the nonadiabatic theory 
of scattering developed by A. Temkin20 to the L=0, 
Is —» 2s inelastic scattering of electrons by the hydrogen 
atom. They find a 30% decrease in the Is—» 2s cross 
section as calculated by the Is—2s close coupling 
approximation. 

Comparison of the exchange neglected and exchange 
included Is—2s—2p coupling shows that exchange is 
mostly important at threshold, and its effect does not 
extend beyond 20 eV. 

The Is—»2s excitation cross section in the singlet 
state has an interesting behavior immediately above 
threshold. In Fig. 2 this cross section for a range of 600 
meV above threshold is plotted. In the Is—2s coupling 
approximation a maximum appears at 34 meV while in 
the Is— 2s— 2p coupling approximation there are three 
maxima of approximately the same magnitudes at 17, 
34, and 87 meV, respectively. In the singlet case the 
cross section rises sharply within a range of 17 meV 
above threshold to a value of about 0.047ra0

2. It then 
rises with an approximately constant and small slope. 
The contribution of the triplet case is seen to be almost 

w W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959). 
17 R. F. Stebbings, Wade L. Fite, David G. Hummer, and R. T. 

Brackmann, Phys. Rev. 119, 1939 (1960). 
18 A. J. Taylor and P. G. Burke, in Bulletin of the Third Inter­

national Conference on the Physics of Electronic and Atomic Colli­
sions, University College, London, July 1963 (unpublished). 

19 H. L. Kyle and A. Temkin, in Bulletin of the Third Inter­
national Conference on the Physics of Electronic and Atomic Colli­
sions, University College, London, July 1963 (unpublished). 

20 A. Temkin, Phys. Rev. 126, 130 (1962). 
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1S-2S-2P SINGLET 

FIG. 2. L—0t Is —>2s excitation 
cross section above threshold. The 
cross sections are given for the two 
spin states singlet and triplet, and for 
the two approximations Is—2s and 
Is—2s—2p. The total cross section is 
the sum of the singlet and the triplet 
cross sections. 

- r 
60 

S 10 15 

ELECTRON ENERGY (eV) 

FIG. 3. 2s -» 2s total elastic cross section. Curves 
are designated as in Fig. 1. 

1S-2S SINGLET 

1S-2S-2P TRIPLET 1S-2S TRIPLET 

FIG. 4. £ = 0 , 2s —> 2s elastic cross 
section. Curves are designated as in 
Fig. 2. 

- i 1 1 ' i 
240 300 360 420 

ELECTRON ENERGY (milli eV) 

• I 
480 

J 
600 

negligible at the threshold, and it has no maximum in 
this region (see Table II). It should be noted that the 
principal maximum in the Is—> 2s excitation cross sec­
tion appears at about 3 eV with a value of about 0.35, 
and has contribution from higher angular momentum 
than L=0. Although no study has been made to re­
late the existence of the maxima above threshold to 
any physical phenomena, it may be said that, similar to 
resonances below threshold in the elastic scattering of 
electrons by the hydrogen atom, these maxima are due 
to formation of some unstable states of the negative 
hydrogen ion. Damburg and Peterkop,5 and Gailitis and 
Damburg21 have made an extensive study of the be­
havior of different cross sections near threshold in the 
Is—2s, and the Is— 2s— 2p eigenstates coupling 
approximations. 

In Fig. 3 we have shown the 2s —> 2s elastic cross 

ELECTRON ENERGY ( .V ) 

81 M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) 82, 192 (1963). [Note added in proof: When the energy difference be­
tween the 2s and the 2p states are neglected in the Is—2s—2p couplings, Gailitis and Damburg have shown that at the threshold 
the Is —*• 2s excitation cross section does not go to zero (cf. Fig. 2).] 
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TABLE II . The singlet £ = 0 , Is —> 2s excitation cross section near threshold. k% is the wave number of the inelastically scattered wave, 
and E is the corresponding energy in m êV. Qi and Q2 are the cross sections according to the Is—2s and the Is—2s—2p couplings, 
respectively. 

h% 
E (meV) 
0i 
ft 
h% 
E (meV) 
Gi 
Q2 

0 
0 
0 
0 

0.045 
27.5 

0.0346 

0.01 
1.36 
0.0168 

0.050 
34.0 
0.0446 
0.0405 

0.02 
5.44 
0.0298 
0.0149 

0.060 
49.0 
0.0441 
0.0391 

0.025 
8.50 

0.0259 

0.070 
66.6 
0.0435 
0.0361 

0.030 
12.2 
0.0377 
0.0349 

0.080 
87.0 
0.0423 
0.0395 

0.035 
16.7 

0.0405 

0.090 
110 
0.0412 
0.0392 

0.04 
21.8 
0.0423 
0.0353 

0.100 
136 
0.0405 
0.0385 

TABLE III . 2p—2p elastic cross sections. 

&2 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

£=0 
12.488 
0.1758 
0.07386 
0.22032 
0.25024 
0.13477 
0.04395 
0.01868 

£=1 
26.562 
14.210 
8.8346 
6.0065 
2.5053 
0.91169 
0.23647 

£=1 
61.12 
15.292 
8.008 
5.108 
2.0484 
0.7640 
0.2132 

£=1 
2.963 
3.735 
2.165 
1.371 
0.5280 
0.1928 
0.0534 

£=1 
49.22 
7.791 
4.720 
3.373 
1.484 
0.5674 
0.1596 

£=1 
230.42 
74.475 
36.478 
•21.559 
7.3349 
2.3518 
0.55809 
0.20876 

£=2 
6.1961 
5.2190 
4.0761 
3.2062 
1.7048 
0.74615 
0.22647 

B. £— l i— 1 2 

£=2 
8.444 
6.884 
4.940 
3.6364 
1.7392 
0.7220 
0.2180 

C 

£=2 
4.161 
3.182 
1.728 
1.107 
0.4603 
0.1831 
0.0547 

£=2 
3.265 
1.851 
2.219 
2.099 
1.225 
0.5337 
0.1632 

£=2 
4.0427 
7.0963 
6.5573 
5.4143 
2.9703 
1.3155 
0.40443 
0.17048 

A. 

£=3 
2.1260 
2.1768 
1.9476 
1.6993 
1.1013 
0.56949 
0.20035 

L—li—h odd, 

£=4 
0.92680 
1.0526 
1.0100 
0.94122 
0.70920 
0.42475 
0.17178 

Born approximation 

£=5 
0.44497 
0.55433 
0.54983 
0.53204 
0.44518 
0.30158 
0.13878 

£=6 
0.22694 
0.31476 
0.31728 
0.31331 
0.28212 
0.21122 
0.10926 

L=1 
0.08105 
0.18383 
0.18718 
0.18680 
0.17577 
0.14245 
0.08177 

odd, exchange neglected 2p eigenstates couplings approximations 

£=3 
2.5808 
2.5436 
2.2548 
1.9292 
1.1812 
0.5816 
0.2004 

, £ — l i — 1 2 

£=3 
0.6725 
0.7915 
0.6851 
0.5562 
0.3115 
0.1475 
0.0503 

£ = 3 
1.850 
1.504 
1.361 
1.237 
0.8376 
0.4295 
0.1500 

D. L-h 

£=3 
1.9014 
0.92172 
1.0156 
1.1653 
1.1453 
0.74676 
0.30267 
0.14307 

£=4 
1.1408 
1.1580 
1.1160 
1.0380 
0.7652 
0.4436 
0.1776 

£=5 
0.6200 
0.6216 
0.6160 
0.5968 
0.4972 
0.3312 
0.1520 

£=6 
0.3720 
0.3640 
0.3640 
0.3592 
0.3236 
0.2400 
0.1272 

odd, 2p eigenstates couplings approximation 

Singlet 
£=4 
0.2861 
0.3066 
0.3025 
0.2799 
0.1991 
0.1124 
0.0445 

£=5 
0.1552 
0.1576 
0.1587 
0.1547 
0.1277 
0.0837 
0.0381 

Triplet 
£-4 

0.8528 
0.8193 
0.7700 
0.7198 
0.5509 
0.3283 
0.1328 

£=5 
0.4650 
0.4598 
0.4481 
0.4318 
0.3630 
0.2456 
0.1136 

£=6 
0.0930 
0.0913 
0.0920 
0.0913 
0.0823 
0.0605 
0.0319 

£=6 
0.2788 
0.2722 
0.2700 
0.2652 
0.2384 
0.1784 
0.0951 

L — h even, Born approximation 

£=4 
0.30797 
0.48094 
0.29902 
0.26124 
0.37750 
0.39290 
0.21866 
0.11656 

£=5 
0.57480 
0.45745 
0.27895 
0.15835 
0.11091 
0.18754 
0.15188 
0.09255 

L=6 £=7 
0.29675 0.06128 
0.30098 0.05695 
0.23113 0.04364 
0.15225 0.02533 
0.04377 0.03572 
0.07731 0.02824 
0.09753 0.05832 
0.06896 0.04864 

£=7 
0.2516 
0.2352 
0.2352 
0.2340 
0.2208 
0.1784 
0.1064 

£=7 
0.0629 
0.0589 
0.0590 
0.0589 
0.0558 
0.0449 
0.0267 

£=7 
0.1886 
0.1764 
0.1756 
0.1744 
0.1639 
0.1330 
0.0797 

S.E 
250.09 
83.965 
44.978 
28.956 
12.269 
5.2348 
1.8355 
0.8677 

So 
36.56 
23.71 
16.923 
12.8854 
6.9237 
3.30733 
1.16488 

So 
74.52 
27.10 
17.54 
12.90 
6.776 
3.261 
1.195 

Sos 
8.394 
8.323 
5.190 
3.619 
1.7647 
0.8249 
0.2996 

Sor 
56.12 
12.87 
9.964 
8.300 
4.863 
2.4159 
0.8940 

QT 
290.69 
109.714 
63.742 
43.572 
20.571 
9.6066 
3.8272 
2.1455 
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TABLE III—(continued) 

E. L—h—h even, exchange neglected ls—2s—2p eigenstates couplings approximation 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

L = 0 
31.96 

9.371 
4.156 
2.542 
1.208 
0.5612 

L=l 
91.21 
12.65 
5.953 
4.560 
2.879 
1.385 

L = 2 
154.6 
30.88 
13.19 
7.424 
2.906 
1.238 

L=3 
92.86 
20.53 
9.628 
5.249 
1.734 
0.8299 

L = 4 
55.86 
12.99 
6.563 
3.811 
1.106 
0.5109 

L=5 
36.79 
8.451 
4.508 
2.793 
0.8438 
0.3005 

L=6 L-
24.37 
5.695 
3.130 
2.032 
0.6912 
0.2022 

= 7 XE 

487.7 
100.6 
47.13 
28.41 
11.37 
5.028 

QT 

566.32 
129.8 
66.56 
43.07 
19.56 
9.382 

F. L—h—h even, ls—2p eigenstates couplings approximation 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

L=0 
1.964 
0.5131 
0.2346 
0.1227 
0.1071 
0.0571 

L = 0 
15.62 
4.844 
2.247 
1.293 
0.4842 
0.1909 

L = l 
5.238 
3.159 
2.091 
1.252 
0.6796 
0.3366 

26.72 
3.384 
3.886 
3.650 
2.287 
1.063 

L=2 
17.34 
1.544 
1.039 
0.9930 
0.6167 
0.2926 

Z,=2 
32.44 
19.97 
10.33 
6.287 
2.424 
0.9673 

L=3 
1.260 
1.439 
0.4944 
0.1532 
0.2249 
0.1818 

L = S 
6.674 
12.52 
5.922 
3.476 
1.418 
0.6659 

Singlet 
L=4 
0.4896 
0.4063 
0.2539 
0.1191 
0.0635 
0.0954 

Triplet 
L=4 
1.252 
0.8285 
1.035 
0.9248 
0.6072 
0.4001 

L=5 
0.2460 
0.1906 
0.1520 
0.0990 
0.0249 
0.0426 

L = 5 

0.7359 
0.3266 
0.2270 
0.2097 
0.2079 
0.2024 

L=6 

0.1133 
0.0984 
0.0766 
0.0217 
0.0172 

L = 6 

0.2754 
0.1764 
0.1162 
0.0717 
0.0962 

L = 7 

L = 7 

2ES 

26.54 
7.365 
4.363 
2.816 
1.7384 
1.0233 

XET 

83.44 
42.15 
23.82 
15.957 
7.500 
3.586 

QT 

178.89 
72.80 
45.22 
32.45 
17.28 
8.943 

G. L—h—h even, Is—2s—2p eigenstates couplings approximation 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

Z, = 0 
7.852 
2.470 
1.344 
0.7424 
0.2813 
0.1357 
0.0513 
0.0267 

L = 0 
27.90 
4.337 
2.823 
2.032 
0.9741 
0.4291 
0.1564 
0.0805 

£ = 1 
13.45 
5.026 
2.283 
1.316 
0.6752 
0.3339 
0.1053 
0.0451 

L=l 
75.79 
4.540 
4.018 
3.674 
2.290 
1.055 
0.3217 
0.1366 

X=2 
38.56 

7.433 
3.025 
1.579 
0.6254 
0.2862 
0.0930 
0.0422 

L = 2 
63.10 
20.66 
10.75 
6.400 
2.465 
0.9303 
0.2907 
0.1285 

L=3 
21.41 
4.900 
2.683 
1.518 
0.3663 
0.1816 
0.0739 
0.0373 

Z = 3 
87.21 
21.62 
8.986 
4.796 
1.599 
0.6614 
0.2330 
0.1143 

Singlet 
L = 4 

15.44 
3.201 
1.756 
1.079 
0.2726 
0.1065 
0.0553 
0.0318 

Triplet 
£ = 4 

41.31 
10.38 
5.149 
2.950 
0.9568 
0.4150 
0.1780 
0.0982 

Z = 5 
8.610 
2.101 
1.166 
0.7580 
0.2289 
0.0659 
0.0391 
0.0261 

L = 5 
26.12 
6.373 
3.337 
2.013 
0.6421 
0.2540 
0.1291 
0.0810 

L = 6 
6.432 
1.417 
0.7903 
0.5313 
0.1916 
0.0471 
0.0268 
0.0212 

L = 6 
17.13 
4.255 
2.302 
1.468 
0.4924 
0.1639 
0.0907 
0.0655 

L = 7 

0.0383 
0.0181 
0.0166 

£ = 7 

0.1180 
0.0623 
0.0524 

2ES 
111.75 
26.548 
13.047 
7.524 
2.641 
1.1952 
0.4628 
0.2470 

%ET 
338.56 

72.17 
37.37 
23.333 

9.419 
4.027 
1.4619 
0.7570 

QT 
518.92 
122.01 
67.46 
44.54 
20.11 

9.531 
3.945 

1.6 

section. The Is—2s coupling approximation gives a 
value of 9447r#o2 at zero-incident energy, while the 
corresponding value in the Born approximation is 
786rao2. The high value of this cross section at zero 
energy is in sharp contrast with its geometrical cross 
section. The zero energy 2s —> 2s cross section in the 
ls—2s—2p coupling approximation, because of the r~~2 

potential, is difficult to find. The 2s —» 2s cross section 
has certain maxima and minima at low energy which is 
not found in the Is —> Is cross section. Figure 4 shows 
the Z,=0, singlet and triplet 2s —» 2s cross section in the 
two approximations. While there is one minimum in the 
Is— 2s coupling approximation there are three minima 
in the Is—2s— 2p coupling approximation. It is thought 
that the existence of these minima is due to a wider 

L 

L I 

1 / 

/ — \ ls-2s-2p 
/ \ ^ E X . NEGL. 

S~ ^ ^ ^ ^ ^ ^ B O R N 

/As^^czr^^^^^?^^^ 
/ ls-2p H 

/ / / ^ ^ - E X P . ( F i t e Et Al.) 

i ! r i i i i i 1 
"O 5 10 15 20 25 30 35 40 45 50 55 

ELECTRON ENERGY (eV) 

FIG. 5. Is—>2p total excitation cross section. Is—2p refers to 
\s—2p eigenstates coupling approximation. \s—2s—2p has similar 
meaning. EX. NEGL. refers to exchange neglected case. BORN is 
the Born approximation. EXP. refers to experiment. 
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TABLE IV. 2s—2p excitation cross sections. 

A. Born approximation 

0.245 
0.500 
0.678 
0.831 
1.225 
1.803 
2.872 
3,905 

0.245 
0.500 
0.678 
0.831 
1.225 
1.803 

0.245 
0.500 
0.678 
0.831 
1.225 
1.803 
2.872 
3.905 

0.245 
0.500 
0.678 
0.831 
1.225 
1.803 
2.872 
3.905 

72 

X » 0 
210.45 

6.2469 
0.92003 
0.24580 
0.02039 
0.00187 
0.00011 
0.00002 

________ 
5.311 
0.8651 
1.150 
1.249 
0.3847 
0.0654 

£ - 0 
2.243 
0.1241 
0.0362 
0.1866 
0.1048 
0.0175 
0.0014 
0.0002 

X=0 
0.0000 
2.322 
1.590 
0.9885 
0.2648 
0.0455 
0.0040 
0.0007 

14.8451 ~u-M 

X » l 
465.14 
30.729 
6.6619 
2.1480 
0.20887 
0.01900 
0.00107 
0.00017 

B. 

X = l 
12.59 
10.55 
5.907 
2.859 
0.4266 
0.0516 

X = l 
4.424 
1.605 
1.446 
0.9881 
0.1516 
0.0157 
0.0010 
0.0002 

£ = 1 
10.40 
7.125 
2.363 
1.125 
0.2173 
0.0310 
0.0024 
0.0004 

n&221, u --1 

X « 2 
449.77 

57.561 
16.736 
6.4066 
0.78437 
0.07823 
0.00444 
0.00067 

X = 3 
343.68 
64.948 
24.356 
11.011 

1.7481 
0.20201 
0.01211 
0.00182 

Exchange neglected Is-

X=2 
23.21 

1.143 
0.5760 
0.3831 
0.0881 
0.0142 

£ = 2 
3.276 
1.348 
0.5518 
0.2615 
0.0384 
0.0046 
0.0004 
0.0001 

X=2 
56.74 
2.357 
0.3333 
0.1226 
0.0402 
0.0094 
0.0009 
0.0002 

f i - l l + l z 

X=3 

18.92 
7.168 
3.158 
0.4560 
0.0553 

C. ls-2s-

X = 4 
148.60 
54.469 
25.702 
13.641 
2.7859 
0.38645 
0.02545 
0.00389 

X=5 
209.74 
49.590 
24.598 
14.135 
3.6015 
0.59807 
0.04450 
0.00699 

X « 6 
158.31 
40.391 
21,122 
12.973 
3.9501 
0.78354 
0.06688 
0.01096 

2 
1985.69 
303.935 
120.096 
60.560 
13.099 
2.0692 
0.15456 
0.02452 

•2s—2p eigenstates couplings approximation 

~~L^l 

26.25 
12.28 
6.664 
1.403 
0.1846 

X - 5 

14.46 
8.591 
2.328 
0.3930 

X « 6 

15.08 
9.391 
3.022 
0.6183 

S 
41.11 
57.73 
56.62 
32.295 
8.108 
1.3824 

-2p eigenstates couplings approximation 

Singlet 
X=3 

6.360 
3.056 
1.488 
0.1639 
0.0148 
0.0010 
0.0002 

X - 4 

7.159 
3.693 
2.144 
0.4584 
0.0530 
0.0032 
0.0005 

Triplet 
X - 3 

3.838 
1.442 
0.8444 
0.2297 
0.0383 
0.0031 
0.0005 

i I i 3 Z + * i i 

X=4 

17.01 
6.810 
3.411 
0.7623 
0.1223 
0.0095 
0.0015 

m. n •• 1 +4W 

X = 5 

3.911 
2.433 
0.7031 
0.1108 
0.0075 
0.0012 

X = 5 

9.868 
5.518 
1.423 
0.2544 
0.0208 
0.0035 

s (Ref. 24). 

X « 6 

2.505 
0.8529 
0.1726 
0.0133 
0.0019 

X=6 

6.556 
1.987 
0.4070 
0.0359 
0.0063 

2* 
9.943 

16.596 
12.694 
10.006 
2.473 
0.3890 
0.0278 
0.0043 

%T 

67.14 
32.652 
22.406 
18.566 
4.924 
0.9079 
0.0766 
0.0131 

QT* 
13560 
3465.0 
1930.9 
1308.4 
620.51 
294.95 
120.26 
66.509 

QT 

12476 
3308.8 
1867.4 
1280.1 
615.52 
294.26 

Xs-jr^r 
77.083 
49.248 
35.100 
28.572 

7.397 
1.297 
0.1044 
0.0174 

QT 

12512 
3300.3 
1867.0 
1276.4 
614.8 
294.18 
120.21 
66.520 

k^ 

potential range in the 2s —» 2s scattering, a case which 
does not exist in the Is —» Is scattering.211* 

In Fig. 5 the four calculated curves for the Is —> 2p 
excitation cross section are compared with the measure­
ment of Fite, Stebbings, and Brackmann.22*23 The 
ls—2s—2p and the Born curves are the same as in 
Refs. 4(a), 4(b), but the Is—2s—2p exchange neglected, 
and the ls—2p curves are not calculated in these 
references. As concluded before, the calculated curves 
are higher than the experimental. Moreover, we notice 

21tt Note added in proof. Figures 2 and 4 show that in the Is—2$ 
—2p couplings if £»__ and En represent the energy with respect to 
the threshold of the two neighboring maxima or minima then 
JS»/_5n_i=__!const. This may be attributed to the r"2 potential which 
is due to the coupling between the 2s and the 2p states. For further 
details see Ref. 21. 

22 W. L. Fite and R. T. Brackmann, Phys. Rev. 112,1151 (1958). 
» W. L. Fite, R. F. Stebbings, and R. T. Brackmann, Phys. Rev. 

116, 356 (1959). 

that, similar to the Is —» 2s excitation cross section, the 
inclusion of the exchange lowers the value of the cross 
section at threshold. 

The calculation of the 2p —> 2p elastic cross section is 
more complicated than the cases so far considered. For 
a given total angular momentum X, the angular 
momentum of the partial wave which is scattered from 
the 2p state may be X—1, X, and X+l . The first and 
the third values correspond to a wave function which 
has the same parity as the wave functions in the Is and 
the 2s channels. In this case L—h—h is even. The 
second value corresponds to a wave function with a dif­
ferent parity, and the only process that occurs with this 
parity is the 2p elastic scattering. In this case L—h—h is 
odd. We have calculated the 2p -» 2p cross sections for 
the two cases, and they are listed in Table III. The 
total cross section is shown in Fig. 6. Because of the r~2 
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potential it is difficult to find the zero energy value of 
this cross section. 

The 2s —* 2p transition cross section has application 
in some plasma, and stellar atmosphere, calculations. 
The total cross section using the Born approximation is 
given by Seaton.24 In Table IV we list the partial cross 
section using the close couplings approximation. This 
table may be found useful in problems in which plasma 
shielding occurs; where only electrons with an impact 
parameter within a given range can induce the 2s —» 2p 
transition. 

It may be noted that the cross sections for the inverse 
processes 2s -> Is, 2p —> Is, and 2p —» 2s may be cal­
culated by Eq. (3.20) and the symmetry of the T 
matrix. 

Tables for the processes Is —> Is, Is —* 2s, Is —» 2p, 
and 2s —> 2s will not be given here as the most important 
cases have been reported by Burke, Schey, and 
Smith.4(a)(b) These tables in various approximations are 
given in Ref. 6. 

In all tables listed here k\ is the wave number in the 
Is, and k2 is the wave number in the 2s or the 2p chan­
nels. The energy, in electron volts, of the incident elec­
tron in each channel is given by £=13.6&2, where k 
could be h or &2. AH cross sections are in units of ira-o2. 
In Tables III and IV, £ is the sum of the partial cross 
sections calculated. The total cross section QT is ob­
tained by adding the contribution of higher partial 
waves than those calculated using the regular Born ap­
proximation. This could easily be done with the help of 
the table of the Born approximation. 

V. CONCLUSION 

The noniterative technique employed here can be 
applied to a large class of problems containing exchange 
integrals. The method is particularly useful when eX-

ls-28-2p 
'EX. NE6L. 

S0BN. 

Is-2p' 

4 6 8 
ELECTRON ENERGY (eV) 

FIG. 6. 2p -» 2p total elastic cross sections. Curves are desig­
nated as in Fig. 5. The cross section at zero energy is finite but is 
not found here. 

change potential is comparable to direct potential, in 
which case the convergence of iteration is slow. 
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Elements of D^ 

APPENDIX I: ELEMENTS OF THE POTENTIAL MATRIX 

(i) L — \x — l2Even 

/ l 3 r r2\ 

\r 4 4 8 / 

r l 3 r r2~] 

lr 4 4 24J 

r l 3 r r 2 l 6(L+2)r 1 / l 1 1 1 r r2 \ ~1 

Lf 4 4 24 J 2L+1 Lr3 V 3 r2 2r 6 24 144/ J 

6 ( i - l ) r l 

2Z+1 lr3 \rl 

1 1 1 

-+-+-8 r2 2r 6 24 144. B 
24 M. J. Seaton, Proc. Phys. Soc. (London) A68, 457 (1955). 
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D12=D21= (r+^e-w, 
9 

128v2~ / L \ 1 / 2 r l / ! • 3 9 27r' 
# 1 3 = A l l 

Du=Dn= — 

/ L \ « r l / l 3 9 2 7 A n 

243 \ 2 L + 1 / Lr2 \ r 2 2r 8 6 4 / J 

W S v Z / L + l x ^ l / l 3 9 27A 1 2 8 V 2 / £ + i y ' 2 r l / l 3 9 2 7 A _ -i 

243 V2Z+1/ L 2 V 2r 8 64/ J ' 

/ £ \%1 /l 1 1 r r2\ -i 

\2L+l/ Lr2 \r» f 2 6 24/ J 

/ Z , + l Y ' * r l / l 1 1 r r2\ -i . 

\ 2 Z + 1 / Lr2 \r* r 2 6 24/ J 

r l ( l + l ) - | % l / l 1 1 1 r r 2 \ l 

A4=/>43=-18 ( - + - + - + - + - + )<r' 
L(2£+1)2J Lr3 V 3 r* 2r 6 24 144/ J 

Elements of F,j 

Fn= — / Rlar
,L+W-R10r™ —dr'\, 

2L+± rL Jo h r>h J 

\ — / RV/L+W-R^1*1 / —dr' , 
I r* h o *"• J 

is r̂ o r _ ... r* 
F22= 

2Z+1 

Fa* — 

Fu=-

3$ r 1 /R21 r rrRn \ L-l/R21 rr f R21 y\ 
( — / R^^dr'-R^r^l —dr')+ ( / Rnr'^W-R^r^ dr')\, 

L-ll(2L+l)ArL J0 Jo r'L / 2L-3\rL-*J0 J0 r'^ / J 

r 1 /Rn f rTRn \ L+2/Rnr
r f Rn y\ 

- ( — / R2lr'L+W-R21r
L+i\ —dr')+ ( / R21r

,L+W-R21r
M dr')\, 

'L(2L+iy\rL Jo Jo r'L / 2 Z + 5 V £ W 0 Jo r'™ / J 

Fl9 = -

2Z+3l_(2Z+l)2 

P rR 

2L+ 

F2i=Fi2\^Rio ^ Rzo~] 

r^20 C fRlO 1 
- — / Rwr'wdr'-R2orw \ —dr' , 
llrL Jo Jo r'L J 

r L -i1'2 rR21 r r R10 n 
Fu=y/3d X / Rior'Ldr-R21r

L\ —dr' \, 
L(2£+1)(2Z-1)2J Lr^Jo Jor'1*-1 J 

r L+l -l1'2 rRn rr f Rw 1 
Fu=-^3P\ X / R1or"*W-R21r

L+* dr'\, 
L(2L+l)(2i:+3)2J LrWJo Jo r,L+l J 

r L -i1'2 ri?2i rr rr R20 1 
F23=\£/3 X / R2or'Hr'-R2lr

L / dr' , 
L(2Z+1)(2£-1)2J Lr^Jo Jor'1-1 J 

7^32 = F23L-^20 ^ RilJ , 

r L+l -l1'2 r i ? 2 1 rr f R20 1 
2?„*-VSM X / R2or,L+2dr'-R21r^ dr' 

L(2i:+l)(2i+3)2J b-wJo A r'1*1 J 
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F34=-3/3 X — / Rnr'i+W-Rnr1*1 —dr'\, 
L(2£+1)«J Lr* Jo Jo r'L J 

Fzi—Ftz-

Elements of ga and hy 

0RiorL+1 r 1 l+£i2 

6 1 1 -

£22 = 

o„J-
633 " 

n - ^ 2 -
533 ~ 

a.A-
644 

6r442~ 

#12 = 

> 2L+1 

PR*?1*1 

_ . 
2L+1 

3/3i?2i»-I'+1 

(21,-1) (2Z+1)2 

3 / 3 ( 1 , - 1 ) ^ 1 - 1 

(2L- l ) (2L-3) 

3/3.R21r
t+1 

(2£+3)(2£+l)2 

3j3(I,+2)-R21r
t+3 

(2Z+3)(2Z,+5) 

18 

r 1 i+£i2 -1 
11=-Rio 8(L,0)r , 

LrL 2 J 

r i i+^22 -1 
^ 2 2 = ^ 2 0 | 

^ 2 1 

4-i 

r 1 i+£2
2 1 

Lr1^2 2 J 

r i i+^22 1 

^21 

yL+2 

2 

hn^Rj —8(L,0)r 
2L+1 \_rh 2 

g2i=gi2[^2o —» -Rio], h2i=hn[_Rio —* -#20] , 

gu=y/Sa- R2irL, h13=R10\ S(L,l)r\, 

gsi=gis[^2i —> -Rio], A8i=Aig[22io -> -R21], 

r L+l I1 '2 -Rio 
gu=-y/3d- Uiir1**, hu= , 

L(2L+1)(2ZH-3)»J rL+l 

gn = gu\_Rii^> -Rio], &4i=Ai4[-Rio-> -R21], 

^ T Z 11/2 T ! *+** 
g23=\3/3 Rnr

L, A23=-R2o 
L(2Z,+ 1)(2L-1)2J lrL-i 2 

| ' 32 = g23L-R21 — ^ -R20], ^ 3 2 = ^ 2 3 ^ ^ 2 0 - * ^ 2 1 ] , 

^r L+l 1 R*> 
gu=->/3a -R2i^+2, hu=—, 

L(2Z+1)(2L+3)2J rL+> 
gi2 = g24[-R21 —> -R20] , &42 = ^24C-R20 —* -R 2 l ] , 

rZ(L+l)-]>/2 Rtl 
g84=-3ffl - R 2 i r W , ^34 = , 

i(2L+iyj rL 
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(u) L - l i - l , O d d 

r l 3 r r2~\ r l / I 1 1 1 r r2 \ i 

Lr 4 4 24J Lr3 \ r3 r2 2r 6 24 144/ J 

30 r 1 / £ 2 1 r f R21 \ 1 /JK,i rr rr JR« \ 1 
^55= f / R2ir'Ldr'-R21r

L dr>) ( / R21r'L+W-R2ir
w / dr' ) , 

2 Z + l L 2 L - l \ r L - 1 J o io ^ / 2 Z + 3 V + 1 Jo Jo r/L+1 / J 

r 1 i-3^2i^L r l i+fa-
s » 1 = = ! — ; w :> w ^ J - —«(i,iy 

(2L+1)(2L-1) 
3^2i^*L+2 £21 

(2£+l ) (2 i+3) r7*1 

In F^ matrix the interchange of the functions R\o, R2o, and R2i accompanies the interchange of their argu­
ments too. 

APPENDIX II: SINGULARITY OF THE DETERMINANT OF EQ. (2.17) FOR 1 = 0 AND 1 

(i) L = 0 Case 

By making use of the definition of Dy and Fy and Eq. (2.18), the following relation can be derived 
fromEq. (2.14): 

J | ^2o(—+kAv!-prRj—+kAvtWr=~—Za l z Bu--pa 2 Z B 1 A l i , (II. 1) 

where the superscript p is suppressed when there is only one value for /x and 

au=* [ R10R2ir*dr=l215X3-»y2, (H.2) 

Jo 

^23= / R20R2irzdr^~3y/5. (II.3) 
JO 

Integrating the left-hand side of Eq. (II. 1) by parts, and making use of Eqs. (2.11) and (2.18), we obtain 

f IrRj—+*Ai-j8r*io(—+*AiV=-2[5ai-j85i,]. (II.4) 

We conclude that 
1 

£n-j83u=—[aisB,4-j8a»Bi4]. (H.5) 
v3 

Equation (II.5) connects the right-hand sides of four equations of Eqs. (2.17) specified by ij—21, 12, 24, 14. 
A similar relation should hold among the left-hand sides of these equations. This in fact is the case and by making 
use of the first of Eqs. (2.18) it can be shown directly that equations similar to Eq. (II.5) hold among the elements 
of each column klv of the left-hand sides of Eqs. (2.17) specified by i/'=21,12, 24, 14. We conclude that one of the 
Eqs. (2.17) is linearly dependent on others and the determinant of Eqs. (2.17) is singular. 

(ii) L = 1 Case 

Similar to the previous case, the following relation can be derived from Eqs. (2.14): 

j r £ 2 / — + £ i 2 - - - k - ^ (II.6) 
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where 

038=/ ^2iV4rfr=30. (II.7) 
J 0 

Integrating the left-hand side of Eq. (II.6) by parts, and making use of Eqs. (2.11) and (2.18), we obtain 

f [ '**/—+ki*-~~)vi--PrR 10(—+kAvz~\dr= -2[JB t l- j85i .] . (IL8) 

Combining Eqs. (11.6) and (II.8), we get 

Bn-fiBiZ==i[pa1zB11+^a2zBl2-a1zBzz1+^2(anBzi-ifiazzBu)']^ (II.9) 

Finally, Eqs. (2.14) give the following relation: 

d2 2\ /d2 

rR*i(—+W—Va-jfrftof—+kAvz L = - f [ > ^ M + ^ ^ (11.10) 

Integration by parts of the left-hand side gives as before 

rr /d2 2 \ /d* \ -] 
I rR2ll — +W-- )vt-prRj —+k2

2 )vz\dr= -2 [J5 M - i85 M ] , (11.11) 

whereupon we get 

£ 3 2-/3£23=iD3023£22+/3^ (11.12) 

Similar to the case L = 0 , Eqs. (II.9,12) indicate that two of the Eqs. (2.17) are linearly dependent on others and 
the determinant of Eqs. (2.17) is singular. 

To remove the singularity in L=0 case, one of the Cuv is chosen arbitrarily, and a degenerate equation is removed 
from Eqs. (2.17). Similarly, in the L— 1 case two of the Cuv are chosen arbitrarily and two degenerate equations 
are removed from Eqs. (2.17). 

APPENDIX III: ELEMENTS OF THE MATRIX OF THE SUM OF THE ASYMPTOTIC COULOMB 
AND CENTRIFUGAL POTENTIALS 

Un=L(L+l)r-\ U22=L(L+l)r~\ 

Uzz= (L~ l )L r - 2 +12(L- l ) (2L+ l ) - 1 ^ , Uu= (L+l)(L+2)r-'+12(L+2)(2L+l)-h~\ 

Uu= U21=0, t/i3= tf 3i= [256v2/243][L/(2L+ l)Jt*r~*, 

Uu= ff4i= - [ 2 5 6 v 5 / 2 4 3 ] [ ( L + l ) / ( 2 L + l ) ] 1 / V - 2 , #23= #32= -6[_L/{2L+\)Jl*r-\ 

#24=#42=6[ (L+1) / (2L+1) ] 1 /V- 2 , C/ 3 4=t /43=-36CL(L+l) ] 1 / 2 (2L+l) -V- 3 . 


